Warm-up: put at top of today's assignment Write the first 8 terms of the given pattern:

$$
\begin{aligned}
& \quad 1+\frac{1}{1}+\frac{1}{1 \cdot 2}+\frac{1}{1 \cdot 2 \cdot 3}+\cdots+\frac{1}{} \\
& a_{1} a_{2} \quad a_{3} \quad a_{4} \quad \begin{array}{c}
\text { Fill in the actual values } \\
\text { on your hw paper!!! }
\end{array}
\end{aligned}
$$

Warm-up

(put at top of today's assignment)

$$
1+\frac{1}{1}+\frac{1}{1 \cdot 2}+\frac{1}{1 \cdot 2 \cdot 3}+\cdots+\frac{1}{}
$$

Now simplify using fractions:

$$
1+1+\frac{1}{2}+\frac{1}{6}+\frac{1}{+}+\frac{1}{+}+\frac{1}{2} \approx \square
$$

Round off to the nearest millionth!

The answer for the first 8 terms:

$$
2.718254
$$

$$
e=2.7182818284590452353603
$$

$$
\begin{aligned}
& y=\log x \rightarrow \text { common logarithm (base 10) } \\
& \qquad y=\ln x \rightarrow \text { natural logarithm (base e) }
\end{aligned}
$$

e is often called Euler's number after

 Leonhard Euler, a famous Swiss mathematician from the 1700'sSummation notation $\rightarrow e=\sum_{n=0}^{\infty} \frac{1}{n!}=1+\frac{1}{1}+\frac{1}{1 \cdot 2}+\frac{1}{1 \cdot 2 \cdot 3}+\cdots$
Calculus notation $\rightarrow e=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}$

2.7182818284590452553602874713526624
977572470936999595749669676277240766
303535475945713821785251664274274663
919520050599218174135966290455729003
342952605956507381523286279434907652
358298807551952510190115758541879507
021540891499548841675092447614606680
822648001684774118537423454424371075
590777449920695517027618586062613813
845850007520449358265602976067371132
007098287091274487470472306969772093
101416928568190255151086574657721112
523897844250569536967707854499699679
4686445490598795168688923009879812...
3. 141592653589793238462643383279502884197169399375105820974944592 30781640628620899862803482534211706798214808651328230664709384460 95505822317253594081284811174502841027019385211055596446229489549 30381964428810975665933446128475648233786783165271201909145648566 92346034861045432664821339360726024914127372458700660631558817488 152092096282925409171 r $\quad 38204665213841469$ 5194151160943305727 r 462379962749567351 308602139494639527 o/1907 179860943 $74818467669405132 \quad 0568127 \quad 526356082$ 7214684409012249 ' 4301465 < 853710507
$9021960864034418159813629^{7}$ 5105973173281609631859502 9311881710100031378387528 0428755468731159562863882 0192787661119590921642019 968230301952035301852968 485724245415069595082953 55060400927701671139009 \& 59619894676783744944825 1293313677028989152104 $876402474964732639141^{\prime}$ 92458631503028618297 9302955321165344987 ? 77130996
94553469
87533208
78759375
80952572
173622599
686172785
240128583
774726847
205696602
S042699227 6749838505 ر60236480665 289097777279 548161361157352 2654252786255181841 21721477235014144197 47574184946843852332 39073941433345477624168625189835694855620992192221842725502542568 87671790494601653466804988627232791786085784383827967976681454100 95388378636095068006422512520511739298489608412848862694560424196 52850222106611863067442786220391949450471237137869609563643719172 87467764657573962413890865832645995813390478027590099465764078951 26946839835259570982582262052248940772671947826848260147699090264 01363944374553050682034962524517493996514314298091906592509372216 964615157098583874105978859597729754989... 7072113499999983729780499 2642522308253344685035261 2061717766914730359825349 (7818577805321712268066130 ;5485863278865936153381827 39124972177528347913151557 90750983817546374649393192 03563707660104710181942955 14753464620804668425906949 038150135112533824300355 3547836009341721641219 99569092721079750 347977535663698074 060016145249192173

705302 17 (6)392171762931767523846 5771342757789609173637178 7968925892354201995611212

[^0]

4.2 Notes: The Natural Exponential Function

 Sketch a graph of$$
y=e^{x} \text { and } y=e^{-x}
$$

Domain $\rightarrow(-\infty, \infty)$
Range $\rightarrow(0, \infty)$
Asymptote at $\mathrm{y}=0$

4-2 notes:

Continuously Compounded Interest
$A=\mathrm{Per}^{\dagger}$
$A=$ final amount $\mathrm{P}=$ principal (initial investment) $r=$ interest rate $t=$ \# of years

4-2 notes:

Compound Interest

$A=P\left(1+\frac{r}{n}\right)^{n t} \quad w^{5 \%}=.05$
Compounded: Semi-annually $\rightarrow \mathrm{n}=2$
Quarterly $\rightarrow \mathrm{n}=4$
Monthly $\rightarrow \mathrm{n}=12$
Daily $\rightarrow \mathrm{n}=365$

A = final amount
$\mathrm{P}=$ principal (initial investment)
$r=$ annual (yearly) interest rate
$\mathrm{n}=$ \# times interest is paid per year
(compounded)
$t=$ \# of years

Special Instructions for 4.2 \#37a-C compare interest rate options by assuming a $\$ 10,000$ investment earning interest for 5 years.

Compound Interest

$$
\mathrm{A}=\mathrm{P}\left(1+\frac{r}{n}\right)^{\mathrm{nt}}
$$

versus

$$
\begin{array}{|l|}
\hline \text { Continuously Compounded Interest } \\
\mathrm{A}=\mathrm{Pe}^{r t} \\
\hline
\end{array}
$$

4.2 \# 25 c and 29 b use a graphing calculator or Desmos to help with your sketch

https://www.desmos.com/calculator

[^0]:

